DIketahui \(y (u) = 5u^2 + 3u\) dan \(u (t) = 2t\). Tentukan \(\dfrac {dy}{dt}\)
\begin{equation*}
\begin{split}
y (u) & = 5u^2 + 3u \\\\
\dfrac {dy}{du} & = 10u + 3
\end{split}
\end{equation*}
\begin{equation*}
\begin{split}
u (t) & = 2t \\\\
\frac {du}{dt} & = 2
\end{split}
\end{equation*}
\begin{equation*}
\begin{split}
\frac {dy}{dt} & = \frac {dy}{du} \:.\: \frac {du}{dt} \\\\
\frac {dy}{dt} & = (10u + 3) \:.\: 2 \\\\
\frac {dy}{dt} & = 20u + 6 \\\\
\frac {dy}{dt} & = 20 (2t) + 6 \\\\
\frac {dy}{dt} & = 40t + 6
\end{split}
\end{equation*}