\({\color {blue} \sin (A + B) = \sin A \cos B + \cos A \sin B }\)
\begin{equation*}
\begin{split}
\sin 15 & = \sin (45 - 30) \\\\
\sin 15 & = \sin 45 \cos 30 - \cos 45 \sin 30 \\\\
\sin 15 & = \left(\frac{1}{2} \sqrt{2} \right) \left(\frac{1}{2} \sqrt{3} \right) - \left(\frac{1}{2} \sqrt{2} \right) \left(\frac{1}{2}\right) \\\\
\sin 15 & = \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} \\\\
\sin 15 & = \frac{1}{4} (\sqrt{6} - \sqrt{2})
\end{split}
\end{equation*}