REFLEKSI | MATRIKS REFLEKSI | HASIL REFLEKSI |
Sumbu X | \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\) | \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) |
Sumbu Y | \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\) | \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) |
Garis \(y = x\) | \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) | \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) |
Garis \(y = -x\) | \(\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}\) | \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) |
Garis \(x = a\) | \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\) | \(\begin{pmatrix} x' - a \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x - a \\ y \end{pmatrix}\) |
Garis \(y = b\) | \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\) | \(\begin{pmatrix} x' \\ y' - b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y - b \end{pmatrix}\) |
Titik \((a,b)\) | \(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\) | \(\begin{pmatrix} x' - a \\ y' - b \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x - a \\ y - b \end{pmatrix}\) |
Garis \(y = mx + c\)
\(m = \tan \theta\) |
\(\begin{pmatrix} \cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta \end{pmatrix}\) | \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \dfrac cm \begin{pmatrix} -2 \sin^2 \theta \\ \sin 2 \theta \end{pmatrix}\) |