Statistik Data Majemuk

Ukuran penyebaran data

 

Ukuran Penyebaran Data

Ukuran penyebaran data terdiri atas:

1. Simpangan rata-rata

\(SR = \dfrac {\Sigma \: |x_i - \bar x |}{n}\)

\(SR = \dfrac {\Sigma \: \left(f \:.\: |x_i - \bar x |\right)}{n}\)

 

2. Ragam (Varians)

\(\sigma^2 = \dfrac {\Sigma \: |x_i - \bar x |^2}{n}\)

\(\sigma^2 = \dfrac {\Sigma \: \left( f_i \:.\: |x_i - \bar x |^2\right)}{n}\)

\(\sigma^2 = \dfrac {\Sigma \: x_i^2}{n} - \left(\dfrac {\Sigma \: x_i}{n} \right)^2\)

\(\sigma^2 = \dfrac {\Sigma \: f_i \:.\: x_i^2}{n} - \left(\dfrac {\Sigma \: f \:.\: x_i}{n} \right)^2\)

 

3. Simpangan baku (standar deviasi)

Simpangan baku (\(\sigma\)) adalah akar dari varians.


Contoh

Tentukan nilai simpangan rata-rata, varians dan simpangan baku dari data di bawah ini:

Nilai Frekuensi
1 - 3 5
4 - 6 12
7 - 9 13
10 - 12 9

 

Pada tabel, tambahkan kolom \((x_i - \bar x)\) dan \((x_i - \bar x)^2\)

Nilai \(x_i\) \((x_i - \bar x)\) \((x_i - \bar x)^2\) \(f_i\) \(f_i \:.\: x_i\) \(f_i \:.\: (x_i - \bar x)\) \(f_i \:.\: (x_i - \bar x)^2\)
1 - 3 2 −5 25 5 10 −25 125
4 - 6 5 −2 4 12 60 −24 48
7 - 9 8 1 1 13 104 13 13
10 - 12 11 4 16 9 99 36 144
\(\Sigma = 39\) \(\Sigma = 273\) \(\Sigma = 0\) \(\Sigma = 330\)

 

Rata-rata

\(\bbox[5px, border: 2px solid magenta] {\bar x = \dfrac {\Sigma \: f_i \:.\: x_i}{\Sigma \: f} = \dfrac {273}{39} = 7}\)

 

Simpangan rata-rata

\(\bbox[5px, border: 2px solid magenta] {SR = \dfrac {\Sigma \: \left(f_i \:.\: |x_i - \bar x |\right)}{\Sigma \: f} = \dfrac {0}{39} = 0}\)

 

Varians

\(\bbox[5px, border: 2px solid magenta] {\sigma^2 = \dfrac {\Sigma \: \left( f_i \:.\: |x_i - \bar x |^2\right)}{\Sigma \: f} = \dfrac {330}{39} = 8,46}\)

 

Simpangan baku

\(\bbox[5px, border: 2px solid magenta] {\sigma = \sqrt{8,46} = 2,91}\)

 

 

SOAL LATIHAN

--- Buka halaman ini ---

Ukuran nilai letak (Prev Lesson)