SIFAT-SIFAT LIMIT
Jika \(\displaystyle \lim_{x\to c} f(x) = L\) dan \(\displaystyle \lim_{x\to c} g(x) = M\)
1. Aturan penjumlahan
\(\displaystyle \lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x) = L + M\)
2. Aturan pengurangan
\(\displaystyle \lim_{x\to c} (f(x) - g(x)) = \lim_{x\to c} f(x) - \lim_{x\to c} g(x) = L - M\)
3. Aturan perkalian konstanta
\(\displaystyle \lim_{x\to c} (k \:.\: f(x)) = k \:.\: \lim_{x\to c} f(x) = k \:.\: L\)
4. Aturan perkalian fungsi
\(\displaystyle \lim_{x\to c} (f(x) \:.\: g(x)) = \lim_{x\to c} f(x) \:.\: \lim_{x\to c} g(x) = L \:.\: M\)
5. Aturan pembagian fungsi
\(\displaystyle \lim_{x\to c} \dfrac {f(x)}{g(x)} = \dfrac {\displaystyle \lim_{x\to c} f(x)}{\displaystyle \lim_{x\to c} g(x)} = \dfrac {L}{M}\)
6. Aturan pangkat
\(\displaystyle \lim_{x\to c} [f(x)]^n = [\lim_{x\to c} f(x)]^n = L^n\)
7. Aturan akar
\(\displaystyle \lim_{x\to c} \sqrt [n] {f(x)} = \sqrt [n] {\lim_{x\to c} f(x)} = \sqrt [n] {L}\)
Jika n bilangan genap dan L bernilai negatif, maka limit tidak ada.