Sifat-sifat Limit

Konsep Dasar

SIFAT-SIFAT LIMIT

Jika \(\displaystyle \lim_{x\to c} f(x) = L\) dan \(\displaystyle \lim_{x\to c} g(x) = M\)

 

1. Aturan penjumlahan

\(\displaystyle \lim_{x\to c} (f(x) + g(x)) =  \lim_{x\to c} f(x) + \lim_{x\to c} g(x)  = L + M\)

 

2. Aturan pengurangan

\(\displaystyle \lim_{x\to c} (f(x) - g(x)) =  \lim_{x\to c} f(x) - \lim_{x\to c} g(x)  = L - M\)

 

3. Aturan perkalian konstanta

\(\displaystyle \lim_{x\to c} (k \:.\: f(x)) =  k \:.\: \lim_{x\to c} f(x) = k \:.\: L\)

 

4. Aturan perkalian fungsi

\(\displaystyle \lim_{x\to c} (f(x) \:.\: g(x)) =  \lim_{x\to c} f(x) \:.\: \lim_{x\to c} g(x)  = L \:.\: M\)

 

5. Aturan pembagian fungsi

\(\displaystyle \lim_{x\to c} \dfrac {f(x)}{g(x)} =  \dfrac {\displaystyle \lim_{x\to c} f(x)}{\displaystyle \lim_{x\to c} g(x)}  = \dfrac {L}{M}\)

 

6. Aturan pangkat

\(\displaystyle \lim_{x\to c} [f(x)]^n =  [\lim_{x\to c} f(x)]^n = L^n\)

 

7. Aturan akar

\(\displaystyle \lim_{x\to c} \sqrt [n] {f(x)} =  \sqrt [n] {\lim_{x\to c} f(x)} = \sqrt [n] {L}\)

Jika n bilangan genap dan L bernilai negatif, maka limit tidak ada.

(Next Lesson) Contoh Soal 01
Kembali ke Sifat-sifat Limit