\begin{equation*}
\begin{split}
A + B & = \begin{pmatrix} 1 & -2 \\ 7 & -1 \end{pmatrix} \\\\
A - B & = \begin{pmatrix} 3 & 4 \\ -1 & 1 \end{pmatrix} \quad (+) \\
\hline \\
2A & = \begin{pmatrix} 1 & -2 \\ 7 & -1 \end{pmatrix} + \begin{pmatrix} 3 & 4 \\ -1 & 1 \end{pmatrix} \\\\
2A & = \begin{pmatrix} 4 & 2 \\ 6 & 0 \end{pmatrix} \\\\
A & = \frac 12 \begin{pmatrix} 4 & 2 \\ 6 & 0 \end{pmatrix} \\\\
A & = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}
\end{split}
\end{equation*}
\(A + B = \begin{pmatrix} 1 & -2 \\ 7 & -1 \end{pmatrix}\)
\(\begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} + B = \begin{pmatrix} 1 & -2 \\ 7 & -1 \end{pmatrix}\)
\(B = \begin{pmatrix} 1 & -2 \\ 7 & -1 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}\)
\(B = \begin{pmatrix} -1 & -3 \\ 4 & -1 \end{pmatrix}\)