Dawai/Senar

Konsep Dasar

Frekuensi Dawai

Cepat rambat gelombang bunyi pada dawai

\(v =  \sqrt{\dfrac {F}{\mu}}\) dimana \(\mu = \dfrac mL\)

\(v =  \sqrt{\dfrac {F}{\rho \:.\: A}}\)

 

Frekuensi nada dasar (\(f_o\))

\(f_o =  \dfrac {v}{2L}\)

Perbandingan frekuensi nada harmonik

\(f_o : f_1 : f_2 : f_3 = 1 : 2 : 3 : 4\)

 

 

Nada dasar

Rendered by QuickLaTeX.com

\(L = \frac 12 \lambda\)

\(\lambda = 2 L\)

Nada atas ke satu

Rendered by QuickLaTeX.com

\(L = \lambda\)

Nada atas ke dua

Rendered by QuickLaTeX.com

\(L = \frac 32 \lambda\)

\(\lambda = \frac 23 L\)

 

 

Perbandingan panjang gelombang 

\begin{equation*} \begin{split} \lambda_o : \lambda_1 : \lambda_2 & = 2L : L : \tfrac 23 L \\\\ \lambda_o : \lambda_1 : \lambda_2 & = 2 : 1 : \tfrac 23 \quad {\color {blue} \times \: 3} \\\\ \lambda_o : \lambda_1 : \lambda_2 & = 6 : 3 : 2 \end{split} \end{equation*}

Perbandingan frekuensi

Frekuensi berbanding terbalik dengan panjang gelombang.

\begin{equation*} \begin{split} f_o : f_1 : f_2 & = \tfrac 16 : \tfrac 13 : \tfrac 12 \quad {\color {blue} \times \: 6} \\\\ f_o : f_1 : f_2 & = 1 : 2 : 3 \end{split} \end{equation*}

(Next Lesson) Latihan Soal
Kembali ke Dawai/Senar