Series

Expansion (a + b)^n

 

Expansion

\(\displaystyle (a + b)^n = \sum_{r = 0}^n \begin{pmatrix} n \\ r\end{pmatrix} \:.\: a^{n - r} \:.\: b^r \)

or

\((a + b)^n = a^n + \begin{pmatrix} n \\ 1\end{pmatrix} \:.\: a^{n - 1} \:.\: b + \begin{pmatrix} n \\ 2\end{pmatrix} \:.\: a^{n - 2} \:.\: b^2 + \begin{pmatrix} n \\ 3\end{pmatrix} \:.\: a^{n - 3} \:.\: b^3 + \dotso + b^n\)

 

Exercise

--- Open this page ---

Please login to get access to the quiz
(Next Lesson) Arithmetic progression