Bentuk Eksponen dan Bentuk Akar

Bentuk Akar

 

Mengubah Bentuk Akar Menjadi Bentuk Eksponen

Bentuk akar dapat diubah menjadi bentuk eksponen.

 

Contoh 01

\(\large \sqrt {a} = a^{\frac 12}\)

Contoh 02

\(\large \sqrt [3] {a^2} = a^{\frac 23}\)

Contoh 03

\(\large \sqrt [5] {a^3} = a^{\frac 35}\)

 

Contoh 04

\(\large \sqrt {\sqrt {a}} = a^{\frac 14}\)

Contoh 05

\(\large \sqrt [3] {\sqrt [5] {a^4}} = a^{\frac {4}{15}}\)

Contoh 06

\(\large \sqrt [5] {a \:.\: \sqrt [4] {a^3}} = a^{\frac 15} \:.\: a^{\frac {3}{20}}\)

\(\large \sqrt [5] {a \:.\: \sqrt [4] {a^3}} = a^{\frac {7}{20}}\)

 

 

Menyederhanakan Bentuk Akar

Bentuk akar disederhanakan dengan memisahkan bilangan yang dapat diakar.

 

Contoh 01

\begin{equation*} \begin{split} & \sqrt {12} = \sqrt {4 \:.\: 3} \\\\ & \sqrt {12} = 2 \sqrt{3} \end{split} \end{equation*}

Contoh 02

\begin{equation*} \begin{split} & \sqrt {50} = \sqrt {25 \:.\: 2} \\\\ & \sqrt {50} = 5 \sqrt{2} \end{split} \end{equation*}

Contoh 03

\begin{equation*} \begin{split} & \sqrt [3] {54} = \sqrt [3] {27 \:.\: 2} \\\\ & \sqrt [3] {54} = 3 \sqrt [3] {2} \end{split} \end{equation*}

 

Merasionalkan Bentuk Akar 1

Merasionalkan bentuk akar adalah menghilangkan bentuk akar pada penyebut dari sebuah pecahan.

 

Contoh 01

\begin{equation*} \begin{split} & \frac{1}{\sqrt{5}} \quad {\color {blue} \times \frac{\sqrt{5}}{\sqrt{5}}}  \\\\ & \frac{\sqrt{5}}{5} \\\\ & \frac{1}{5} \sqrt{5} \end{split} \end{equation*}

Contoh 02

\begin{equation*} \begin{split} & \frac{1}{\sqrt [3] {7}} \quad {\color {blue} \times \frac{\sqrt [3] {7^2}}{\sqrt [3] {7^2}}}  \\\\ & \frac{\sqrt [3] {7^2}}{\sqrt [3] {7^3}} \\\\ & \frac{1}{7} \sqrt [3] {49} \end{split} \end{equation*}

Contoh 03

\begin{equation*} \begin{split} & \frac{1}{\sqrt [5] {2^3}} \quad {\color {blue} \times \frac{\sqrt [5] {2^2}}{\sqrt [5] {2^2}}}  \\\\ & \frac{\sqrt [5] {2^2}}{\sqrt [5] {2^5}} \\\\ & \frac{1}{2} \sqrt [5] {4} \end{split} \end{equation*}

 

Merasionalkan Bentuk Akar 2

Pada sebuah pecahan. bila penyebut berupa penjumlahan akar, maka pecahan dikalikan dengan dengan sekawannya.

Penyebut Sekawan Hasil Kali
\(\sqrt {a} + \sqrt{b}\) \(\sqrt {a} - \sqrt{b}\) \(a - b\)
\(\sqrt {a} - \sqrt{b}\) \(\sqrt {a} + \sqrt{b}\) \(a - b\)

 

Contoh 

\begin{equation*} \begin{split} & \frac{1}{\sqrt{5} + \sqrt{2}} \quad {\color {blue} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}}  \\\\ & \frac{\sqrt{5} - \sqrt{2}}{5 - 2} \\\\ & \frac{1}{3} (\sqrt{5} - \sqrt{2}) \end{split} \end{equation*}

 

 

Bentuk Akar di Dalam Akar

 

\(\sqrt{(a + b) + 2 \sqrt{ab}} = \sqrt{a} + \sqrt{b}\)

\(\sqrt{(a + b) - 2 \sqrt{ab}} = \sqrt{a} - \sqrt{b}\)

 

Contoh 01

\begin{equation*} \begin{split} & \sqrt{5 + 2\sqrt{6}} \\\\ & \sqrt{(3 + 2) + 2\sqrt{3 \:.\: 2}} \\\\ & \bbox[5px, border: 2px solid magenta] {\sqrt{3} + \sqrt{2}} \end{split} \end{equation*}

Contoh 02

\begin{equation*} \begin{split} & \sqrt{4 - 2\sqrt{3}} \\\\ & \sqrt{(3 + 1) - 2\sqrt{3 \:.\: 1}} \\\\ & \sqrt{3} - \sqrt{1} \\\\ & \bbox[5px, border: 2px solid magenta] {\sqrt{3} - 1} \end{split} \end{equation*}

SOAL LATIHAN

--- Khusus Member ---

Bentuk Eksponen (Prev Lesson)
(Next Lesson) Persamaan Eksponen Sederhana