Bentuk 2

Bentuk 2

Bentuk 2

 

Bentuk \(a^{f(x)} = b^{f(x)}\)
Solusi

\(f(x)  = 0\)

Dengan syarat a dan b tidak sama dengan 0

Contoh

\(5^{x^2 - x - 12} = 7^{x^2 - x - 12}\)

 

Satu-satunya solusi adalah \(x^2 - x - 12 = 0\)

\begin{equation*}
\begin{split}
& x^2 - x - 12 = 0 \\\\
& (x + 3) (x - 4) = 0 \\\\
& \bbox[5px, border: 2px solid magenta] {x = 4 \text{ atau }  x = -3}
\end{split}
\end{equation*}

Bentuk \(a^{f(x)} = b \: ^{g(x)}\)
Solusi

Solusi

Menambahkan \(\log\) pada kedua ruas.

\( \log a^{f(x)} = \log b \: ^{g(x)}\)

\( f(x) \:.\: \log a = g(x) \:.\: \log b \)

Contoh:

\(5^{x^2 + x - 2} = 3^{x + 2}\)

 

Solusi

\begin{equation*}
\begin{split}
& 5^{x^2 + x - 2} = 3^{x + 2} \\\\
& \log 5^{x^2 + x - 2} = \log 3^{x + 2} \\\\
& (x^2 + x - 2) \log 5 = (x + 2) \log 3 \\\\
& (x + 2)(x - 1) \log 5 - (x + 2) \log 3 = 0\\\\
& (x + 2)[(x - 1) \log 5 - \log 3] = 0
\end{split}
\end{equation*}

 

Faktor 1

\(x + 2 = 0 \)

\(\bbox[5px, border: 2px solid magenta] {x = -2} \)

Faktor 2

\((x - 1) \log 5 - \log 3 = 0 \)

\((x - 1) \log 5 = \log 3 \)

\(x - 1 = \dfrac{\log 3}{\log 5}\)

\({\color {blue} \dfrac{\log b}{\log a} = \log_a b}\)

\(x - 1 = \log_5 3 \)

\(x = 1 + \log_5 3 \)

\(x = \log_5 5 + \log_5 3 \)

\(\bbox[5px, border: 2px solid magenta] {x = \log_5 15}\)


Lanjutkan Ke Latihan Soal

Kembali Ke Bab Utama