Bentuk Parsial

Bentuk Parsial

Bentuk Parsial

 

INTEGRAL PARSIAL

\(\displaystyle \int u \:.\: dv = u \:.\: v - \int v \: du\)

Contoh 01

\(\int (2x + 3) \sin(4x - 1)\:dx\)

 

Rumus parsial: \(\int u \: dv = u \: v - \int v \: du\)

 

\begin{equation*} \begin{split} u & = 2x + 3 \\\\ du & = 2 \: dx \end{split} \end{equation*}

\begin{equation*} \begin{split} dv & = \sin (4x - 1)\:dx \\\\ \int dv & = \int \sin (4x - 1)\:dx \\\\ v & = \int \sin (4x - 1) \: \frac{d(4x - 1)}{4} \\\\ v & = \frac 14 \int \sin (4x - 1) \: d(4x - 1) \\\\ v & = - \frac 14 \cos (4x - 1) \end{split} \end{equation*}

 

 

\begin{equation*}
\begin{split}
& \int u \: dv = u \:.\: v - \int v \: du \\\\
& \int (2x + 3) \sin(4x - 1)\:dx  \\\\
& (2x + 3) \:.\: - \frac 14 \cos(4x - 1) - \int  - \frac 14 \cos(4x - 1) \:.\: 2 \: dx \\\\
& -\frac 14 (2x + 3) \cos(4x - 1) + \frac 12 \int \cos(4x - 1) \: dx\\\\
& \bbox[5px, border: 2px solid magenta] {-\frac 14 (2x + 3) \cos(4x - 1) + \frac 18 \sin(4x - 1) + c}
\end{split}
\end{equation*}



Lanjutkan Ke Latihan Soal

Kembali Ke Bab Utama