Ringkasan

Ringkasan

 

NO KETERANGAN PERSAMAAN
1 Simpangan  

\(y = A \sin (\omega t + \theta_o)\)

Simpangan maksimum

\(y_{\text{max}} = A\)

Simpangan minimum

\(y_{\text{min}} = 0\)

2 Kecepatan getar \(v = \dfrac{dy}{dt}\)

\(v = \omega A \cos (\omega t + \theta_o)\)

\(v = \omega \sqrt{A^2 - y^2}\)

Kecepatan maksimum

\(v = \omega \: A \)

Kecepatan minimum

\(v = 0\)

3 Percepatan getar \(a = \dfrac{dv}{dt} = \dfrac{d^2 y}{dy^2}\)

\(a = -\omega^2 A \sin (\omega t + \theta_o)\)

\(a = -\omega^2 \: y\)

Percepatan maksimum

\(a = \omega^2 A \)

Percepatan minimum

\(a = 0 \)

 

4

Fase Getaran \(\varphi = \dfrac{t}{T}\)
 

5

Konstanta Getaran \(k = \omega^2 \:.\: m\)
6 Energi potensial  

\(E_p = \frac{1}{2} \: k \: y^2\)

Energi potensial maksimum

\(E_{\text{p max}}  = \frac{1}{2} \: k \: A^2\)

Energi potensial minimum

\(E_{\text{p min}}  = 0\)

7 Energi kinetik  

\(E_k = \frac{1}{2} \: m \: v^2\)

Energi kinetik maksimum

\(E_{\text{k max}}  = \frac{1}{2} \: m \: \omega^2 \: A^2\)

Energi kinetik minimum

\(E_{\text{k min}}  = 0\)

 

8

Energi Mekanik \(E_M = E_p + E_k = \frac{1}{2} \: k \: A^2\)
9 Bandul dan Pegas Bandul

 

\(T = 2 \pi \sqrt{\dfrac{l}{g}}\)          \(f = \dfrac{1}{2 \pi} \sqrt{\dfrac{g}{l}}\)

Pegas

 

\(T = 2 \pi \sqrt{\dfrac{m}{k}}\)          \(f = \dfrac{1}{2 \pi} \sqrt{\dfrac{k}{m}}\)

 

10

Gaya Pemulih \(F = m \:.\: a\)

Kembali Ke Bab Utama